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LElTER TO THE EDITOR 

Statistical properties of valleys in the annealed 
random map model 

B Derrida and D Bessis 
Service de Physique Thtorique, Institut de Recherche Fondamentale, CEA, CEN-Saclay, 
91 191 Cif-sur-Yvette Cedex, France 

Received 25 February 1988 

Abstract. The annealed random map model is one of the simplest models of statistical 
mechanics with stochastic dynamics. For this model, we define valleys by saying that two 
configurations submitted to the same stochastic forces belong to the same valley at time I 
iftheir trajectories have met before time t .  We compute in the long-time limit the probability 
distribution of the number and the sizes of these valleys. We find a structure very reminiscent 
of the valley structure of the mean-field spin glasses with sample-to-sample fluctuations. 
Interpreting the annealed random map model as an aggregation model, we obtain non-self- 
averaging effects for the number of macroscopic clusters and for their sizes. 

There are two kinds of dynamics one can consider to describe the time evolution of 
systems in statistical mechanics models: deterministic and stochastic dynamics. 

Deterministic dynamics are defined by a map F in phase space 

% , + I  = F ( % , )  (1) 

which gives the configuration of a system at time t +  1 as a function of its 
configuration %, at time t. The map %, -+ V,,, does not depend on time. For such 
dynamics, phase space, even when it is finite, can be decomposed into several valleys, 
each valley being the basin of attraction of an attractor of the map F. 

Stochastic dynamics are defined by a map in phase space 

= G( %,, noise,) (2) 

which depends on some stochastic variables that we will call the noise, noise,. So the 
map V, + changes with time because it depends on noise, and it is only the 
statistical properties of this map (averages over noise,) which do not depend on time. 
In most cases, the random variable noise, represents the thermal noise and the map 
(2) allows paths from any configuration to any other configuration in phase space. 
The definition of valleys is much more difficult with stochastic dynamics. For finite 
systems, the valley structure depends on the timescale: in the limit t + 00, the system 
is able to explore the whole phase space and therefore one observes a single valley. 
On the contrary, for large systems and at finite t, one expects rather well defined valleys 
corresponding to the possible phases of the system. So one expects the number and 
the size of the valleys to depend on the timescale. 

In the present work, we will consider a very simplified model of stochastic dynamics: 
the annealed random map model which is defined by the following rules. 

(1) Phase space consists of M points. 
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(2) At each time step t, the map Vf + G( (ef,  noise,) is a random map of this set of 

(3) The maps at time t and t' are uncorrelated. 
The valley structure of the quenched (deterministic) version of this model for which 

the map %, + (e,+, is random but remains fixed at all times has been studied recently 
(Derrida and Flyvbjerg 1987a). 

Since the notion of valleys depends on time for stochastic dynamics, we will use 
the following definition of valleys: we submit two different initial configurations (e,, 
and (eh to the same noise, noise,, and we say that they belong to the same valley at 
time t if (e, = (e;. (Of course if two configurations meet at some time t, they remain 
identical at any later time.) This definition was already used numerically in several 
problems (Derrida and Weisbuch 1987) and gave well defined dynamical transitions. 

For the annealed random map model, to submit two configurations to the same 
noise, noise,, means simply that the same map (2) is used for the time evolution of 
and Vi. The goal of the present work is to calculate the statistical properties of the 
sizes of these valleys analytically. 

Let us start with the simple case of two randomly chosen configurations %,, and 
(eh. If one defines A ,  the probability that (e, = (e; and B, the probability that (e, # %;, 
one has 

M points into itself (G( (e, noise,) and G( (e', noise,) are uncorelated if (e # (e'). 

1 
M 

A,,, = A ,  +- B, 

B,+, = ( 1  -$) Bf 

with the initial condition A - ,  = 0 and B-,  = 1. This gives 
r + l  

1 - A , = B , = ( l - d )  , 

(3) 

(4) 

For three random initial configurations, one can define A ,  the probability that they 
are identical at time t, B, the probability that two of them are identical but differ from 
the third one and C, the probability that they are all different. One then gets 

1 1 
M M  A,+ ,  = A , + -  B , + ,  C, 

B,+, = (1 -$) B, +a ( 1  -+) c, 

c,+, = (1 -d) (1 -;) c, 
with the initial condition A - ,  = B-,  = 0 and C- ,  = 1. The solution is then 
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One can of course generalise equations (3)-(5) to the case of n random initial conditions. 
If one defines Pj" ) ( t )  the probability that, at time t ,  the n configurations have been 
grouped into i clusters, i.e. that only i configurations are still different, the time evolution 
of P$" ' ( t )  is given by 

where the matrix p, is given by 

This gives in particular 

p,-l,j=j(j- 1)/2 (9) 

pj-z,j = j(j- l)(j-2)(3j-5) /24.  (10) 

The recursion (8) can be understood by saying that for j + 1 configurations to regroup 
themselves into i configurations, either the first j of them go into i - 1 configurations 
and the (j+ 1)th must go elsewhere or the first j go into i configurations and the 
G+ 1)th has i possible choices. Of course the initial condition becomes, in the case of 
n configurations, 

P p ( - l ) = & " .  (11) 

(Choosing n configurations at random at t = 0 is the same as choosing n different 
configurations at time t = -1.)  It is clear from (4) and (6) that, for M large, the natural 
timescale is M. If one defines 

r = t / M  @"'( 7 )  = Pi")( f )  (12) 

the time evolution of the 0:"' is governed for M large by 

with the initial condition 

Qi"'(0) = ai,". (14) 

Equation (13) can be obtained easily by expanding (7)  up to power M - '  for large M. 
It expresses the fact that, for large M, the dominant effect is that pairs of configurations 
meet at a given time. The events for which three or more configurations meet at a 
given time would give higher-order contributions in the M-'  expansion. 

Equation (13) can be solved by recursion starting with Q:): 

Q ? ) ( T )  = exp[ -fn(n - 1)7] ( 1 5 )  

and one gets 

n ! ( n - l ) !  
i ! ( i - l ) !  p = i  

( p  + i -2)! exp[-ip(p - I )T]  
Q!")( T )  = (-1)P+'(2p - 1) 

( p  - i)! ( n  + p  - I ) !  ( n  - p ) ! '  
This expression can easily be derived from (13) by using the Laplace transform with 
respect to T. 
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Let us define Z i ( 7 )  by 

(Here the limit n+oo has to be taken after M + m  so that n<c MI".) Z , (T)  is the 
probability that there are exactly i valleys in the system since it is the probability of 
finding exactly i different configurations starting with an arbitrarily large number n of 
different initial configurations. From (161, it follows that 

1 "  ( p  + i - 2) ! 
zi(T)= c (-1y+y2p- 1) exp[-b(p- 1171. (18) i ! ( i - l ) !p=i  ( p  - i) ! 

The series (18) are obviously convergent for any time T > 0. Physically, we know also 
that all the Z,(T) vanish as T+O. It is, however, much less obvious by looking at (18) 
that all the Zi (7 )  given by (18) vanish as T+O. This can, however, be shown using 
the fact that &(T) can be rewritten as 

a3 

z,(T)= n ( ~ - e - ~ ' ) ~ .  
p = l  

Expression (19) can be obtained from (18) using Jacobi's theta functions (Bateman 
1953). By definition of the function 61 : 

CO 

6 l ( ~ ,  e-'/2)=2e-'/s (-l), exp[ -$~(n+ l )~ ]  s in [ (2n+ l )m]  (20) 
n =o 

we see that 

The zeros of 61 are all known (Bateman 1953) and the function 61 can be written as 
a, 

6,( U, e-'',) = 2 e-''' s i n ( m )  fl ( 1  -e-"')[1-2 e - " ' c o ~ ( m ) + e - ~ ~ ' ] .  (22) 
n = ,  

Clearly (21) and (22) give expression (19). 

from (13) one has 
We see from (19) that Z,( T) and all its derivatives vanish at T = 0. Therefore since 

one can check that all the Zi( T) vanish at T = 0. 
The expressions (18), (19) and (23) of the Z;.(T) give the probability of finding 

exactly i valleys at time MT. One can then try to determine the statistical properties 
of the weights of these valleys. By definition, the weight W, of valley S is the probability 
that a randomly chosen configuration belongs to the valley S. To study the statistical 
properties of these weights, it is convenient to introduce the probabilities X,,,,,,,,,.,,, (7) 
that, starting at t = 0 with n ,  + n2+. . . + nk randomly chosen configurations, the 
configurations 1 to n ,  have become identical at time MT, the configurations n,+ 
1,.  . . , n ,  + n, have become identical at time MT but still differ from the first n ,  
configurations, etc, and the configurations ( n ,  + . . .+ n K - ,  + 1) . . . ( n ,  +. . . + n K )  are 
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identical at time MT but still differ from the first n, + . . . + n K - ,  configurations. The 
time evolution of the Xn,,nz,.. . .flK(~) is given by 

r r  

where 

N = n, + n 2 + .  . . + nK. (25) 

X n , , n ,  ...., n K ( 0 )  = Snl , lSn2 ,1  . S ~ , , ~ S K . N *  (26) 

The initial condition is 

Formula (24) expresses the fact that the N configurations remain different from time 
0 to time M (  T - 7’) when a pair of configurations becomes identical. Differentiating 
with respect to T, one gets 

dXnI ,..., n K / d ~ = t n ~ ( n ~ - l ) X n , - ~ , n ~  ,_.., n K + .  . 3 
+!nK(nK -l)Xnl,nz ,..., n.- i - tN(N-l)XnI ,.... n K .  (27) 

From the solution of (24), we can deduce the statistical properties of the weights of 
the valleys. If one defines f( W, , . . . , W,) by 

f l  f l  

x,,,,, ._.., nK = Jo . . . J dW1 . . .  dWK Wyl . . .  W z  f(W1, . . . ,  WK). (28) 

f( W, , . . . , W,) is the probability that, if one chooses K valleys among all the possible 
valleys, the first one has weight W,, the second one has weight W2 and the Kth one 
has weight W,. Then (28) expresses the fact that the first n, configurations fall into 
the first valley, etc, and the last nK configuration fall into the Kth valley. 

One can show that the f( W, , . .  . , W,) are given by 
1 ( i  - l)! i! 

f (w l ,*** ,  w K ) = i F K  ( i - ~ ) !  Zi (7 )  I, . . . I,’ d Y, . . . dY, S(1-  Yl -. . . - Y, )  

x [6( wl- Y1).  6(  w, - YK)] (29) 
where the Zi(7) are given by (19) and (23) or (18) .  In order to prove (29) from (27), 
one can calculate the X,,,,,,.,,, from (28) and (29) 

and show that (30) satisfies (27) when the Z,(T)  are given by (19) and (23). 
The expressions (28) and (29) of the X,,,,...,,,(T) and of the f( W,, . . . , W,) can be 

simplified in many ways. Let us just give here two alternative expressions that we 
found particularly simple. Expressions (30) can be replaced by 

xn,,flz ,,,, f l K  ( 7 )  = nl ! n2! . . . n~ ! (-1) 

n = N - l  (2n+ l ) ( N - K ) ! ( n  + K - l ) !  
exp[-tn(n + I ) T ] .  

f l = K - l  (-‘In ( N +  n ) !  ( N  - 1 - n ) !  ( n  - K + l ) !  
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This result could have been obtained in a straightforward way. If one introduces the 
Laplace transform in T of X,,,, , , . , . , , ,  ( 7): 

+cc 

L2 ...., f l K ( P )  = j e-P'Xfl,,fl, ,... ) d.r. 

Inserting it into equation (27), one finds (by induction) 

Taking the inverse transform, one gets (31). 
Expression (29) can also be rewritten as 

f( w,, . . . , W,) = 2, ( 7 ) K  ! ( K  - l ) !  S (  1 - w, -. . . - W,) 

This shows that f( W ,  , . . . , W,) depends only on the sum W, +. . . + W,. 
In the present work we have obtained the analytic expressions (19) and (23) of the 

probability Z i ( 7 )  of finding i valleys at time T and the probability distribution 
f( W,,  W,, . . . , W,) of the weights of the valleys. From the knowledge of J one can 
deduce other properties like the probability distribution T (  Y )  of Y defined by 

Y = C  w: (35) 
s 

where the sum runs over all the valleys. One gets 

T (  Y )  = z,( T)S( Y -  I )  + 
r, 

( i  - 1) ! zi( 7) 
i = 2  

x ] ~ '  ...lo IdW, . . .  dW,S(l-W,-  . . . - W , )  G(Y-W:-  . . . -  W:). 

(36) 
From this expression, it is clear that for this model too T (  Y )  is singular at Y = 
1 , & .  . . , l / n  (Derrida and Flyvbjerg 1987a, b, Gutfreund et al 1988) and that the valley 
structure of the model studied here has sample-to-sample fluctuations which are 
qualitatively similar to those of the mean-field spin glasses (Mezard et a1 1984a, b), 
and of the quenched random map model (Derrida and Flyvberg 1987a). 

The annealed random map studied here can also be viewed as a very simplified 
mean-field model of aggregation (Ernst 1986, Herrmann 1986 and references therein). 
The M possible initial conditions are the M particles. Each time that two particles 
or clusters meet, they stick and stay together for ever. The number of clusters decreases 
with time and their sizes increase. The results of the present work deal with the latest 
stage of this aggregation process, i.e. when macroscopic clusters (of size of order M )  
appear. Our calculation gives that there is a finite probability of finding several 
macroscopic clusters (probability 2,(7) of finding i clusters at time M T )  and their 
weights W, fluctuate from sample to sample with a probability distribution given by 
(29) and (34). It would of course be interesting to know what these results become 
for more complicated aggregation models and then to relate the properties of the 
macroscopic clusters to what is already known on the aggregation in finite systems 
(Lushnikov 1978, Van Dongen and Ernst 1987a, b). 
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